Computers in Biology and Medicine 119 (2020) 103695

Contents lists available at ScienceDirect o
Computers in Biology
and Medicine

Computers in Biology and Medicine

B4

journal homepage: http://www.elsevier.com/locate/compbiomed

ELSEVIER

A partition-based optimization model and its performance benchmark for
Generative Anatomy Modeling Language

b
b

Doga Demirel , Berk Cetinsaya ”, Tansel Halic ", Sinan Kockara ¢, Dirk Reiners
Shahryar Ahmadi ¢, Sreekanth Arikatla ®

2 Department of Computer Science, Florida Polytechnic University, Lakeland, FL, USA

Y Department of Computer Science, University of Central Florida, Orlando, FL, USA

¢ Department of Computer Science, University of Central Arkansas, Conway, AR, USA

4 Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
€ Kitware Inc., Carrboro, NC, USA

ARTICLE INFO ABSTRACT

Keywords:

Modeling language for human anatomy
Endoscopic submucosal dissection
Virtual human anatomy

non-linear programming
Partition-based optimization

Background: This paper presents a novel iterative approach and rigorous accuracy testing for geometry modeling
language - a Partition-based Optimization Model for Generative Anatomy Modeling Language (POM-GAML).
POM-GAML is designed to model and create anatomical structures and their variations by satisfying any imposed
geometric constraints using a non-linear optimization model. Model partitioning of POM-GAML creates smaller
sub-problems of the original model to reduce the exponential execution time required to solve the constraints in
linear time with a manageable error.

Method: We analyzed our model concerning the iterative approach and graph parameters for different constraint
hierarchies. The iteration was used to reduce the error for partitions and solve smaller sub-problems generated by
various clustering/community detection algorithms. We empirically tested our model with eleven graph pa-
rameters. Graphs for each parameter with increasing constraint sets were generated to evaluate the accuracy of
our method.

Results: The average decrease in normalized error with respect to the original problem using cluster/community
detection algorithms for constraint sets was above 63.97%. The highest decrease in normalized error after five
iterations for the constraint set of 3900 was 70.31%, while the lowest decrease for the constraint set of 3000 was
with 63.97%. Pearson correlation analysis between graph parameters and normalized error was carried out. We
identified that graph parameters such as diameter, average eccentricity, global efficiency, and average local
efficiency showed strong correlations to the normalized error.

Conclusions: We observed that iteration monotonically decreases the error in all experiments. Our iteration re-
sults showed decreased normalized error using the partitioned constrained optimization by linear approximation
to the non-linear optimization model.

1. Background

Generative Anatomy Modeling Language (GAML) is particularly
used to generate 3-D virtual human anatomy variations on a web
browser via the use of WebGL (3-D rendering application programming
Interface for web browsers) technology. In GAML, anatomical con-
straints can be incorporated prior to any geometry modification to
achieve authentic 3D models [1]. The purpose of GAML is to create a
platform for the rapid generation of variations in anatomical or

biological structures by fulfilling their structural constraints. These
constraints can stem from anatomy or any restrictions imposed by users
(e.g. physicians or researchers). Our ultimate goal is to minimize any
need for bio-illustrators and provide a free platform where modeling and
modification, with respect to the anatomy, can be performed at ease
without any technical or modeling expertise. We often experience that
even slight modifications over 3-D anatomy models require significant
design reiterations. This is due to the fact that the accuracy of these
models needs to be authenticated after each change done by expert

* Corresponding author. Computer Science Department, University of Central Arkansas, 201 Donaghey Ave, Conway, AR, 72035, USA.

E-mail address: tanselh@uca.edu (T. Halic).

https://doi.org/10.1016/j.compbiomed.2020.103695

Received 13 January 2020; Received in revised form 3 March 2020; Accepted 3 March 2020

Available online 5 March 2020
0010-4825/© 2020 Elsevier Ltd. All rights reserved.

mailto:tanselh@uca.edu
www.sciencedirect.com/science/journal/00104825
https://http://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2020.103695
https://doi.org/10.1016/j.compbiomed.2020.103695
https://doi.org/10.1016/j.compbiomed.2020.103695

D. Demirel et al.

- GAML
Create Joints Interpreter
Solve

Communities

COBYLA

Community
D

Command
Executor

Fig. 1. Overall architecture of POM-GAML. Dashed arrows show that either
step can be performed, and solid arrows show the order of operations.

physicians to ensure the models are anatomically valid. However, GAML
could be able to make modifications on 3-D models respecting the cor-
rectness of the anatomy/biostructure with the imposed constraints. The
authentic model generation will significantly increase the efficiency of
the model for surgical simulation use. Design and modeling of such an
anatomically authentic 3-D model require significant man-hours
including back and forth modifications of the model between medical
experts and bio-illustrators [1].

GAML uses Powell’s non-linear derivative-free constrained and non-
linear optimization solver called Constrained Optimization by Linear
Approximation (COBYLA) [2,3] to satisfy anatomy (geometry) con-
straints. GAML provides linear solution times up to 100 constraints and
exhibits exponential time beyond that. We proposed Partition-based
Optimization Model for Generative Anatomy Modeling Language
(POM-GAML) [4] in our previous work. POM-GAML successfully de-
creases the exponential execution time to linear time for GAML. In a
scene with the twenty-five 3-D models and a total of 160,392 vertices
with 5000 constraints, the speed up was calculated as 2689-fold and the
normalized error was calculated as less than 0.1% using POM-GAML.
However, the error reduction was not the primary focus of these pre-
vious works. The error was within the acceptable error margin and
showed no noticeable differences compared with the actual results.

POM-GAML is used to partition the optimization problem into sub-
problems by introducing additional virtual constraints for each sub-
problem. Using various community detection algorithms, Clauset,
Newman, and Moore (CNM) [5], k-means clustering [6], density peaks
clustering [7], and density-based spatial clustering of applications with
noise (DBSCAN) [8], we find possible candidate nodes for a split. Each
split is carried out on the constraint hierarchy which is formed
depending on the connectivity of joints with these constraints. After the
split operation, two separate geometries and new optimization models
are introduced. Partitioning is imperative in enabling the concurrent
computation of the solution for the sub-problems. The generation of the
sub-problems removes the dependency while retaining the original
optimization problem. In large constraint sets, solving the sub-problems
of a problem compared to solving the original problem decreases the
exponential execution time to linear time. In POM-GAML, the solution
was computed once for each sub-problem to achieve near real-time
performance. The overall workflow of POM-GAML is seen in Fig. 1.

In general, regarding non-linear programming problems, there is no
single algorithm that is more favorable than the other approaches [9].
Partitioning a problem is a widely applied technique; one of the
well-studied approaches is the Divide and Conquer approach. Divide and
Conquer creates extra computations for each sub-problem due to its
recursive nature [10,11]. Anand et al. [10] use a backtracking algorithm
to reduce additional computations. In this approach, until the global
constraint is satisfied, sub-problems were solved recursively using
backtracking and combining solutions. By eliminating redundant
checks, the execution speed can be increased. Reimann et al. [12]
introduced D-Ants, which applies problem decomposition to the vehicle

Computers in Biology and Medicine 119 (2020) 103695

routing problem. For efficiency, the number of clusters were predefined
and the clustering was generated with the sweep algorithm [13] which
then solved with the savings based on the ant system framework [14]. In
regards to the performance benchmark, the D-Ants algorithm was slower
than the granular tabu search [15], which uses candidate lists with tabu
search [16]. Mackey et al. [17] introduced divide-factor-combine for
noisy matrix factorization in an application for video background
modeling context. In this work, the matrix is randomly divided into
sub-problems and the sub-problems are computed in parallel. The
speedup is twenty times faster than the proximal gradient algorithm,
which uses unconstrained non-smooth convex optimization [18].

Furthermore, for constraint-partitioning, Burkard et al. [19]
considered the partition sets as bases of matroids. Matroid is a finite set
that generalizes the idea of linear independence [20]. Burkard et al. [19]
extended a solution that can perform a greedy-like algorithm repeatedly
for matroids. The complexity of the algorithm is O(k%) while all given
matroids have the same structure with k partitioning problems. In
addition, when the involved matroids are not all equal, they need to find
good approximation algorithms. Furthermore, certain problems, such as
the matrix decomposition problem, have a special sequence for mat-
roids, where the complexity is in polynomial time. Wah et al. [21]
presented a theory of penalty methods for mixed-integer, discrete, and
continuous optimization, and its application in solving temporal plan-
ning problems partitioned by the constraints. Their approach reduces
the complexity of non-linear constrained planning problems. Since each
sub-problem has a smaller number of constraints, their algorithm leads
to sub-problems that are simpler to solve.

Another approach to solve large non-linear optimization problems is
sub-space techniques [22]. Sub-space techniques are used to reduce the
computation cost and memory size. According to Refs. [23], the
generalized Lagrangian function method [24], modified sequential
simplex pattern search [25], and the generalized reduced gradient
methods [26] are noted as useful on large-scale non-linear programming
problems. Sequential quadratic programming is a sub-space technique
that solves non-linearly constrained problems by minimizing quadratic
approximations and applying the Lagrangian function to the linearized
constraints [27].

1.1. Contributions of this work

In this work, we introduce an iterative approach where the sub-
problems are expected to converge to an original solution that signifi-
cantly lowers the error in POM-GAML. In addition to the iterative
approach, we tested the optimization model within the spectrum of
clustering techniques and hierarchical graph parameters. We wanted to
understand the response of the optimization model with distinct clusters
of constraints and joints/constraints hierarchy graphs. We believed that
the formation of the partitions might have an impact on the solution of
the optimization model. We hypothesize that the clustering and parti-
tioning the optimization model and then solving in an iterative manner
among the partitions could further improve the error. We thereby
derived and created various joint hierarchies using graph connectivity
parameters to generate test cases for our hypothesis. We wanted to
investigate the influence of joints/constraints hierarchy in our approach
using graph parameters and tested with common clustering techniques.
We experimented with constraint sets varying from 2000 to 4200 and
determined the errors. We used our iterative approach on human
digestive anatomy models for real-life cases as well. We tested our
models used for Virtual Endoluminal Surgery Simulator (VESS) [28]for
Endoscopic Submucosal Dissection (ESD) and Virtual Colorectal Surgi-
cal Trainer (VCoST) training and assessment using 4200 constraints in a
scene with five 3-D models (large intestine, small intestine, stomach,
liver, and spleen) with a total of 80,847 vertices.

D. Demirel et al.

Table 1
Optimization model for partitions.

Computers in Biology and Medicine 119 (2020) 103695

Arg Min: P(XiL; kilp, — pDestinatinnl)t
Subject to:
DiSti]'— |pl_p]| =0 for (I,j EAt (1)
cos™1 (io — Pj) (o — Pj) —6, <0 2
”(Pio - Pj)” X ||(Pi - Pj)” for (ij) € B,
Pio — pj)axis - (pi— p])a:as = (2a)
Dist;j — Admax — |pi — ;| < 0 (3)
) for (i,j) € C;
|pi — pj| — Dist;j — Adpax < 0 4)
2 x tan~t [<0
Sgn(pipj'pivj) an ”1]]” al] (5)
(M) <0 for (i,j) € D, ©
[l
lpi —v;| <0 (7a)
lpi—vil =0 (7b)
i,j EJandi,j €M, k;>0,ANC =0,
P(A)ym nP(A)n =0@,v; =p;,vj=p;v € V,v & AB,C

Fig. 2. Connected joints.

Fig. 3. Partition of joints. Yellow joints are virtual joints and red lines represent
the possible motion of the joints.

2. Methods

In this section, we briefly describe the model and present the itera-
tive approach followed by a description of graph parameterization
metrics for the generation of test cases.

2.1. Virtual joints

Joint is an abstract term that holds the movement information and
constraints for a region of the 3-D model. The dimension of a joint in-
dicates the region of interest that can be enlarged or contracted over the
3-D model. This region affects the spatial position of the vertices when
the joint undergoes any motion. Joints can be linked together to form
more complex structures. The formation of these joints is represented in
a hierarchical graph structure. POM-GAML [4] uses joint graphs to
model anatomies or biostructures. In our joint graph, joints are used as
nodes and constraints/connections are used as edges between the nodes.
A joint graph can be formally defined as; G = (V,E);EC {(Ji,Jx) : Ji,
Jj € V}, where (J;,J;) is a tuple of joints, V is the vertex set, and E is the
edge set of 2-element subsets of the vertex set V.

The optimization model (as seen in Table 1) tries to compute the
nearest possible location to the desired motion of each joint. With the
desired location of a joint or multiple joints given, our optimization
model computes the optimal solution that satisfies all the other joints’
constrained motions in the joint hierarchy graph.

In our optimization model, p; is a 3-D position of a joint (J;), where J;
can be an arbitrary node (vertex) in or a node attached to a 3-D Mesh
(M). Number of joints (N), can be dynamically modified by adding and
removing joints. In between each joint couple J; and J; with corre-
sponding 3-D p; and p; positions, there could be up to four different types
of constraints (Equations 1-4 in Table 1) to restrain the movement of a
node. In our model, unique constraint sets are formed for each constraint
type. For instance, Equation 1 in our optimization model is defined for
the absolute distance constraint and set A indicates the set of absolute
distance constraints. Equation 2 and 2a are for the angle constraints and

D. Demirel et al.

Table 2
Distance properties and corresponding ranges.

Distance Properties

Constraint Radius Diameter Min # of Min # of Average
Set of Central Peripheral eccentricity
Vertex vertex
3000 x<2 4<x <6 x>21 x<5 x < 4.0
3300 5<x < 7<x<9 5<x <10 x<5 6.01<x <
6 8.0
3600 3<x < 7<x<9 x<4 x<5 4.01<x <
4 6.0
3900 x>7 x>10 x <4 x<5 x > 8.01
4200 5<x < 7<x<9 5<x <10 x<5 6.01<x <
6 8.0
2000 x<2 4<x<6 5<x <10 6<x <10 x<4.0
2200 3<x < 4<x <6 5<x <10 6<x <10 x < 4.0
4
2400 x<2 x<3 x> 21 11<x < 15 x < 4.0
2600 5<x < 7<x<9 11<x < x> 16 6.01<x <
6 20 8.0
2800 x<2 x<3 x>21 x<5 x < 4.0
Table 3
Connection properties and corresponding ranges.
Connection Properties
Constraint Characteristic Global Average Clustering
Set of Path Length Efficiency Local Coefficient
Efficiency
3000 x <20 x> 0.71 x > 0.61 x > 0.61
3300 3.01<x <40 0.31<x < x<0.2 x<0.2
0.5
3600 3.01<x < 4.0 0.31<x < x<0.2 x<0.2
0.5
3900 x > 4.01 0<0.3 x<0.2 x<0.2
4200 3.01<x < 4.0 0.31<x < x<0.2 x<0.2
0.5
2000 x<20 x > 0.71 x > 0.61 x > 0.61
2200 2.01<x < 3.0 0.51<x < 0.21<x < 0.4 0.21<x < 0.4
0.7
2400 x<20 x> 0.71 x > 0.61 x > 0.61
2600 3.01<x <40 0.31<x < 0.41<x<0.6 0.41<x < 0.6
0.5
2800 x<20 x> 0.71 x > 0.61 x > 0.61
Table 4
Constraint metrics and corresponding values used.
Constraint Properties
Constraint Set of Constraints per Joint # of Joints
3000 50 60
3300 55 60
3600 60 60
3900 65 60
4200 70 60
2000 50 40
2200 55 40
2400 60 40
2600 65 40
2800 70 40

set B indicates the set of angle constraints. Equations 3-4 are for the
flexibility constraints and set C is designated for the flexibility con-
straints. Sets A;, By, C;,and D, indicate the partitioned sets for sets A, B,
C,and D, respectively where t is the partition. Dist;; is the original dis-
tance between joints J; and J; and Adqy is the maximum displacement
allowed between the joint couple J; and J; using the stiffness ratio k. In
Equation 2, 6 is the maximum angle that J; is allowed to pivot about pj,
and pj,. For the angle constraint, p;, is the original position of p;. In
Equation 2a, (Dio — Pj)qxis and (Di — Pj) 4 are the directional vectors in

Computers in Biology and Medicine 119 (2020) 103695

the x, y, or z axes to accommodate any lock along the axis of rotation.
The direction vector between p;, and pivot point of p; is (pi, — p;). The
direction vector between p; and pivot point of p; is (p; — pj).

We partitioned the problem into sub-problems by introducing the
concept of virtual joints. Partitioning requires a split to remove the
connectivity among the partitions. In each split operation, the joints at
the split location are duplicated. Subsequently, the edge and the con-
straints between the joints are removed. The duplicated nodes will serve
as virtual joints (as shown in Fig. 2 and Fig. 3). The virtual joints carry
information regarding the disconnected joints and apply the constraints
with other partition to its sub-problem. In the model, V is the set of
virtual joints, v; is the virtual joint of joint p;, and vj is the virtual joint of
joint p;. P, is the partition and none of the joints in one partition can be
shared or exist in another partition unless it is a virtual joint. In Equation
5, r is the radius of the cone defined for a virtual joint, while a; is the
angle between joints J; and J;. The angle of the cone is preset to 30°and
change in preset angle shows no significant difference in the constraint
sets over 50°.

2.2. Iterative approach

In our iterative approach, the optimization model is run for each
partition. For each iteration, joints and virtual joints with updated
constraint, connection, position, and partition information are passed
into the optimization model. From joints and virtual joints, constraint
information is gathered. The feasible region for each joint in each
partition is calculated and the geometric boundaries are checked. After
each iteration, properties of all joints and virtual joints such as
constraint, connection, and position information are updated. Virtual
joint locations are synchronized and updated at the end of each iteration
at the synchronization step. The synchronization of the virtual joints is
performed by averaging their current locations. After the first iteration,
the 3-D location of joint J; is p;; and after the second iteration, the 3-D
location of joint J; is py;, where |py; + pai| > 0. The derivative of the
position and summative positional change of the partition joints with
respect to the iteration can be also used for updating the virtual joint. We
iteratively compute the solution where the virtual joints gradually
converge to each other. For the constraint sets varying from 2000 to
4,200, we have utilized our iteration-based method. The next section
describes these joint graph parameters that are used to generate various
complexities that enable us to test and validate our iterative approach.

To summarize our approach, we traverse through our joint hierarchy
and use various community detection/clustering approaches to seek
possible candidate nodes for partitioning. Once candidate nodes are
determined, they are duplicated in the hierarchy. This duplication
generates virtual nodes. The virtual nodes contain information
regarding disconnected joints and mimic the original node by imposing
original constraints. The duplication and followed by the split operation
continues until the constraints between the partitions are completely
separated. These operations will result in separate partitions where no
nodes are shared in their respective joint hierarchies. In the iterations,
solutions to each sub-problem; optimization problem pertaining to each
partition, is solved separately and iteratively. The synchronization, in-
formation exchange phase through virtual joints, is performed at each
iteration to reduce the overall error.

2.3. Graph parameters

For testing purposes, we require a variety of joint hierarchies to
analyze the impact of the joints and constraints distribution over the
optimization model. We aim to perform benchmark tests using these
hierarchies to quantify the performance and error. The motivation of
creating these cases has two folds; we want to eliminate any bias in the
test cases, where the model could coincidentally perform well in one
hierarchy and poor on the other one. Secondly, we want to ensure that

D. Demirel et al.

Computers in Biology and Medicine 119 (2020) 103695

2000

0.60

0.50

0.40

0.30

0.20

Normalized error%

0.10

0.00

1 2

3 4 5

Iteration

s CNM sl KMEaANS5 el Kmeans10

DBSCANS «bue DBSCAN1QO wmlb Denisity Peaks

2200

0.60
0.50
0.40
0.30
0.20
0.10

Normalized error%

0.00

s CNM el KMEANSS et Kmeans 10

Iteration

DBSCANS «eibe DBSCAN10 e« Density Peaks

2400

0.60
0.50
0.40
0.30
0.20

Normalized error%

0.10
0.00

s CNM el KMeaANSS5 e Kmeans10

3 4 5
Iteration
DBSCANS == DBSCAN1Q ==#=Density Peaks

Fig. 4. Normalized iteration graphs for constraint sets 2000, 2200, and 2400.

the optimization model can be applicable regardless of the hierarchy
formation. We also want to analyze the error and error distribution
respecting hierarchy generation parameters.

We used graph generation parameters for automatically generating
joint hierarchies. These parameters are categorized into three metrics;
distance, connection, and constraint. For each parameter, four different
ranges (e.g. easy, mild, moderate, and difficult complexity terms used
for readability) were used to generate increasingly complex constraint
graphs. We will briefly describe these metrics.

2.3.1. Distance metrics

Radius [29], diameter [30], minimum number of central vertices
[31], minimum number of peripheral vertices [32], and average ec-
centricity [33] were used as distance metrics. Distance metrics were
derived from the eccentricity of each vertex. The eccentricity (V) of a

vertex V is the longest distance between V and any other joint node in
the graph. The radius r of a graph is the minimum eccentricity of any
node, r = min(e(V)). The diameter d of a graph is the maximum eccen-
tricity of any joint node in the graph, d = max(e(V)). To find the
diameter of a graph, we find the shortest path between each pair of
nodes. The greatest length of any of these paths is the diameter of the
graph. A central node in a graph of radius r is one whose eccentricity is r
and that is a node that achieves the radius such that ¢(V) =r. Peripheral
nodes are defined as the nodes that are d distance away from some other
node. Formally, V is peripheral if ¢(V) = d. Table 2 shows the distance
properties and corresponding ranges.

2.3.2. Connection metrics
Characteristic path length [34], global efficiency [35], average local
efficiency [36] and clustering coefficient [37,38] were used as graph

D. Demirel et al.

Computers in Biology and Medicine 119 (2020) 103695

2600

0.50

0.40

0.20

0.10

Normalized error%

0.00

b CNM sl Kmeans5 Kmeans10

3 4 5
Iteration
DBSCANS == DBSCAN1Q === Density Peaks

2800

0.50

0.40

0.20

Normalized error%

0.10

0.00

e CNM el Kmeans5 Kmeans10

3 4 5
Iteration
DBSCANS

wwbe DBSCAN1Q «mib Denisity Peaks

Fig. 5. Normalized iteration graphs for constraint sets 2600 and 2800.

creation metrics. The characteristic path length (or the average path
length) is the average of all the distances between the node pairs((V;,
Vj), i #j) in the graph, where i and j are nodes in the graph. The global
efficiency is the average of all the reciprocals of the non-zero distances in
a graph. The local efficiency is the average efficiency of the local sub-
i#j, [39,40]. A clus-
tering coefficient is a degree of connectivity measure of two nodes that
are connected to the same node. Clustering coefficient of a graph is the
average of the local clustering coefficients for all nodes in the graph. The

graphs. Efficiency is defined as ¢; =

1
distance(ij)’

clustering coefficient is definedas C = 1 >~ 27”, where N is the list of
neN (ﬂ)
2

all nodes, y, is the number of links between neighbors of a node n € N,
and d, is the degree of a node n € N. Table 3 shows the connection
metrics and corresponding ranges.

2.3.3. Constraint metrics

In GAML, a joint holds constraint and attachment information.
Constraints per joint and number of joints were used as constraint
metrics for the graph generation. The numbers used in constraint met-
rics are derived from our previous empirical tests where the average
constraints per joints tabulated here were sufficient for modeling com-
plex human anatomy. The number of joints were set to 40 and 60, while
constraints per joint were modified from 50 to 70. The reason is to
determine graph test cases for the number of joints and constraints per
joints separately. Table 4 shows the constraint metrics and corre-
sponding values.

2.4. Clustering and community detection

We use hierarchical joint graph structure to partition the

optimization model. Before we partition the problem, we determine the
optimal location for the splitting operation. The assumption here is that
in a graph the joint communities with higher constraint density could be
good candidates for model partition. As a result, we used common
partition algorithms such as; CNM [5], k-means clustering [6], density
peaks clustering [7], and DBSCAN [8] to detect clusters/communities.
We would like to note that we use cluster and community terms inter-
changeably to stay with the terminology in both graph and data mining
disciplines.

CNM is an agglomerative hierarchical method based on greedy
optimization. In CNM, modularity is used as a measure to calculate the
strength of communities. Modularity calculates the divisibility of a
community by checking the ratio of the number of edges in each com-
munity to the edges between the communities. Density peaks clustering
is a density-based clustering approach. In density peaks, it is assumed
that cluster centers are away from other points with high densities and
cluster centers have a higher density than their neighbors. For each data
point in density peaks, we used two parameters local density(p) and the
distance of each point from points belonging to higher density. The
distance parameter was populated from the connectivity of joints in the
graph. Another clustering approach used is DBSCAN. DBSCAN uses
parameters (MINPTS, &, DISTFUNC) to find highly dense areas of joints.
MINPTS expresses the amount of joints needed in the radius (¢) to
specify the area as a high density area. DISTFUNC is the distance func-
tion between joints. In our case, we used 2 for MINPTS to minimize
noise, we selected 5 (DBSCANS5) and 10 (DBSCAN10) for the radius(e) of
connectivity of joints in the graph, and we used connectivity between
joints as the DISTFUNC. The last technique used for joint clustering is k-
means. In the k-means algorithm, n-dimensional data is partitioned into
k clusters. Cluster number “k” was set to the same number of clusters as
DBSCAN clusters.

D. Demirel et al.

Computers in Biology and Medicine 119 (2020) 103695

3000

0.50

0.40

0.30

0.20

0.10

Normalized error%

0.00

s CNM e KMEANSS e Kmeans 10

3 B 5
Iteration
DBSCANS

et DBSCAN1Q e Density Peaks

3300

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Normalized error%

s CNM e KMeANS5 e Kmeans 10

3 4 5
Iteration

DBSCANS wbue DBSCAN1O e« Density Peaks

3600

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Normalized error%

s CNM el KMeaANS5 e Kmeans10

3 4 5
Iteration
DBSCANS wbe DBSCAN1QO wmih Density Peaks

Fig. 6. Normalized iteration graphs for constraint sets 3000, 3300, and 3600.

After the graph structure is created for the scene, the communities
need to be detected before the partitioning and iteration. For the
selected community detection/clustering algorithm, parameters are
given as an input. Once the communities/clusters are detected, the edges
between the communities are deleted and virtual joints are added for
each separated joint couple.

3. Results
3.1. Time and error

For each constraint set and clustering/community detection algo-
rithm, we performed five iterations. We observed that further iterations
beyond five do not significantly decrease the error percentage. Each
iteration was performed five times to determine the average computa-
tion time. The magnitude of the test scenes was 40.86-unit distance,

which was used to compute the normalized error. The normalized error
was computed with regard to the dimension of the scene (Equation (8)).
In Equation (8), Partition is the 3-D position of the joints using the par-
titions, NonPartition is the 3-D position of the joints without the parti-
tions, and SceneMag is the scene magnitude.

Partition—NonPartition
NonPartition

1
SceneMag x100 ®

%Normerror =Avg

The normalized error in all constraint sets and all clustering/com-
munity detection algorithms decreased as the number of iterations has
increased (as seen in Figs. 4-7). In the first iteration for the smallest
constraint set, constraint set of 2,000, the normalized error varied from
0.53% to 0.46%. The highest normalized error was for CNM while
DBSCAN10 had the lowest normalized error. At the fifth and final

D. Demirel et al. Computers in Biology and Medicine 119 (2020) 103695

3900

0.30
R 0.25
—
g
5 0.20
g 015
g ow '\
§ 0.05 s e =

0.00

1 2 3 4 5
Iteration
s CNM el KMEANSS e Kmeans10 DBSCANS «b DBSCAN1O e« Density Peaks
4200

0.20
R
‘é 0.15
]
T 010 —
,—é \
5 0.05 = o
=z —_—

0.00

1 2 3 4 5
Iteration
s CNM il KM@ANSS e Kmeans 10 DBSCANS == DBSCAN1Q =8 Density Peaks

Fig. 7. Normalized iteration graphs for constraint sets 3900 and 4200.

Table 5
The decrease in error percentage from one to five iterations.

Decrease in error percentage (%)

Constraint Set of CNM k-means5 k-means10 DBSCANS5 DBSCAN10 Density Peaks
3000 63.07 70.53 60.85 61.64 63.76 56.50
3300 69.07 70.04 65.27 68.24 64.78 70.00
3600 67.18 68.54 65.20 63.23 71.39 58.30
3900 65.57 71.17 73.34 70.13 71.35 76.92
4200 63.16 66.38 61.76 69.75 63.26 70.00
2000 65.19 69.49 65.72 66.80 63.25 67.44
2200 66.13 69.08 64.20 68.39 66.90 70.45
2400 68.72 63.71 62.74 64.50 61.36 62.16
2600 68.37 63.31 67.05 70.13 59.08 61.76
2800 65.85 60.75 67.40 70.88 63.03 62.96
Table 6
Speed-up(x-times) for each community detection/clustering algorithm compared to non-partitioned performance.
Constraint Set of Community Detection/Clustering Algorithms
CNM k-means5 k-means10 DBSCANS5 DBSCAN10 Density Peaks

3000 16.12 210.18 324.97 187.79 9.17 106.35
3300 12.76 290.30 26.82 223.32 5.12 5.59

3600 16.43 285.09 20.75 241.57 3.04 8.38

3900 81.67 219.89 18.18 196.12 2.68 7.45

4200 124.78 278.20 24.98 143.42 2.99 7.79

2000 9.52 99.63 31.79 96.32 18.77 43.62
2200 7.36 89.50 29.48 121.84 19.91 29.44
2400 8.38 100.28 25.82 124.63 14.82 23.58
2600 9.02 106.60 28.67 130.74 10.82 17.35
2800 10.54 131.66 28.30 8.87 138.30 38.73

D. Demirel et al.

Table 7

Computers in Biology and Medicine 119 (2020) 103695

Difference between lowest and highest decrease in error

percentage
Density Peaks |

DBSCANIO |-

DBSCANS .

k-means10

k-means5

CNM .
0.00 5.00 10.00 15.00 20.00 25.00

Fig. 8. Differences between the lowest and highest decrease in error percentage for each clustering/community detection algorithm.

Strong Pearson correlations of graphs parameters with the error.

Algorithm Graph Parameter Iteration
1 2 3 4 5
k-means5 Diameter —0.83(0.003) —0.87(0.001) —0.89(0.0006) —0.87(0.001) —0.84(0.0024)
Average Eccentricity —0.78(0.0078) —0.82(0.0037) —0.83(0.0029) —0.81(0.0045) —0.77(0.0092)
DBSCANS5 Diameter —0.78(0.0078) —0.78(0.0078) —0.80(0.0055) —0.80(0.0055) —0.81(0.0045)
Global efficiency 0.79(0.0065) 0.78(0.0078) 0.80(0.0055) 0.81(0.0045) 0.83(0.0029)
Average Local Efficiency 0.77(0.0092) 0.77(0.0092) 0.80(0.0055) 0.81(0.0045) 0.81(0.0045)
Clustering Coefficient 0.79(0.0065) 0.79(0.0065) 0.82(0.0037) 0.82(0.0037) 0.82(0.0037)
DBSCAN10 Diameter —0.75(0.012) —0.77(0.0092) —0.80(0.0055) —0.80(0.0055) —0.77(0.0092)
Density Peaks Average Local Efficiency 0.80(0.0049) 0.82(0.0035) 0.78(0.0083) 0.77(0.0087) 0.79(0.0072)
Clustering Coefficient 0.81(0.0045) 0.83(0.0033) 0.78(0.0076) 0.79(0.0071) 0.80(0.0058)

P-values indicated in parenthesis.

iteration, the normalized error varied between 0.18% (CNM) to 0.15%
(k-means5). After five iterations, the constraint set of 2000 constraints
was the only constraint set that k-means5 had the lowest error per-
centage. Even though k-means5 had the highest error percentages in the
first iteration for the constraint sets 2,400, 2,600, 2,800, 3,000, 3,600,
and 4,200, in constraint sets 2,000, 3,000, and 3300 k-means5 had the
largest decrease in error percentage (as seen in Table 6). The results for
k-means5 showed that having the highest error percentage for a specific
constraint set (2,400, 2,600, 2,800, 3,000, 3,600, and 4200) did not
account for the largest decrease in error percentage in the constraint sets
(2,000, 3,000, and 3300). Table 5 shows the decrease in error percent-
age in the iterations starting from one to five. Iteration one is similar to
the results noted in our previous work, POM-GAML [4].

In the fifth iteration for constraint sets, 3,300, 3,900, and 4,200,
CNM and DBSCAN10 had the same error percentages, 0.07%, 0.03%,
and 0.03% respectively. In the first iteration for the largest constraint
set; constraint set of 4,200, the normalized error varied from 0.19% to
0.08%. The highest normalized error was for k-means5 while CNM had
the lowest normalized error. The normalized error varied between
0.03% (CNM and DBSCAN10) to 0.07% (k-means10). Out of all clus-
tering/community detection algorithms CNM had the smallest differ-
ence between the lowest and highest decrease in error percentage with
6%, while density peaks had the highest difference with 20.42% (as seen
in Fig. 8). In the fifth iteration, in the constraint sets; 2,600, 2,800,
3,900, and 4,200, DBSCAN10 and density peaks had the same error
percentages 0.10%, 0.13%, 0.03%, and 0.03% respectively.

For time analysis, an Intel Core i7-5820 K CPU with 16 GB RAM and a
GeForce GTX 970 GPU with the driver version 419.67 was used. Table 7
shows the speed-up times for each partition algorithm for each
constraint set. The maximum overall speed-up (compared to non-

partitioned performance) was achieved with k-means5 for the
constraint sets of 3,300, 3,600, 3,900, 4,200, and 2,000, with k-means10
for the constraint set of 3,000, with DBSCANS5 for constraint sets of
2,200, 2,400, and 2,600, and with DBSCAN10 for the constraint set of
2800 (as seen in Table 6).

3.2. Parameter analysis

We aim to understand the correlation between graph parameters and
computed errors to recognize model behavior for large constraints. We
run the Pearson’s correlation test for each graph parameter against the
normalized error for each constraint set and iteration. For the Pearson
correlation test, r value is the correlation coefficient and p value is the
significance. According to our results, the minimum number of central
and peripheral nodes did not show a strong correlation to the normal-
ized error results. Pearson’s correlation values, r, for the minimum
number of central nodes varied between 0.32 (p = 0.367) to 0.656 (p =
0.039) while the minimum number of peripheral nodes varied between
0.51(p = 0.132) to 0.65 (p = 0.042). The rest of the parameters had at
least an r value of 0.6 or —0.6 against the normalized error results. For k-
means5 normalized error results, diameter, and average eccentricity had
a strong negative correlation for each iteration (as seen in Table 7). For
DBSCANS normalized error results, global efficiency, average local ef-
ficiency, and clustering coefficient had a strong positive correlation,
while diameter had a strong negative correlation for each iteration (as
seen in Table 7). For DBSCAN10, normalized error results and diameter
had a strong negative correlation for each iteration (as seen in Table 7).
For density peaks normalized error results, average local efficiency, and
clustering coefficient had a strong positive correlation for each iteration
(as seen in Table 7).

D. Demirel et al.

Computers in Biology and Medicine 119 (2020) 103695

Fig. 9. (a) 3-D scene with joints after solving with five-iteration partitioned and non-partitioned optimization model, (b) Scene error comparison using the Canny

edge detection algorithm.
4. Discussion

Based on our results, the diameter has a significant impact on the
error. We believe that efficient partitioning of the joints is possible with
a bigger diameter. As seen in the results section, k-means5, DBSCANS5,
and DBSCAN10 have strong negative correlations between normalized
error and diameter. Even though not strong, k-means10 (average r =
—0.73), CNM (average r = —0.72), and density peak (average r = —0.71)
algorithms all have negative correlations. Another graph parameter,
clustering coefficient, shows the degree of nodes in a graph that is in-
clined to cluster together. Between normalized error and clustering co-
efficient, density peaks and DBSCAN5 showed strong positive
correlations, while CNM (average r = 0.69), k-means5 (average r =
0.79), k-means10 (average r = 0.74), and DBSCAN10 (average r = 0.73)
showed positive correlations. These results imply that proper parti-
tioning can significantly reduce the error.

Different variations of anatomies in a virtual surgical simulator allow
for surgeons to practice on a variety of difficult surgical scenarios. These
variations are generated with our approach introduced in this study to
ensure anatomical relevance. The digestive anatomy was constructed for
our surgery simulations for ESD training and assessment, VESS [41] and
VCoST. ESD is an endoscopic technique for en bloc resection of gastro-
intestinal lesions bigger than >20 mm [28]. VCoST is a virtual trainer for
colorectal surgery skills. We created a virtual scene of the digestive
anatomy and attached joints equivalent to 4200 constraints. The scene
had five 3-D models (large intestine, small intestine, stomach, liver, and
spleen) related to the human digestive anatomy with a total of 80,847
vertices. We executed nodal transformations for each model in the scene.
Fig. 9a shows the 3-D scene with the joints after motion using the par-
titioned iterative approach and non-partitioned optimization models.
Arrows in Fig. 9a show the transformation motion (direction of the
intended transformation), green circles represent five-iteration

10

partitioned and red circles represent non-partitioned solver results. The
visible red circle indicates an error at that location. The visual errors
between our approach and non-partitioned solver results are not clearly
noticeable to the eye. Therefore, we used the Canny edge detection al-
gorithm [42] using MATLAB and marked the errors in the scene with red
(also with red circles to point them out) as seen in Fig. 9b.

5. Conclusion

In this work, we introduced an iterative approach and performance
benchmark for a Partition-based Optimization Model for Generative
Anatomy Modeling Language (POM-GAML). POM-GAML is an anatomy
modeling language that incorporates and solves a non-linear optimiza-
tion model to create anatomically correct structures when the geometry
undergoes any modifications. The optimization model in POM-GAML
fulfills any requested variations by satisfying geometric constraints.
This model can be used in any biological structure other than human
anatomy. We experimented our approach with hierarchical graphs that
are computationally generated cases representing various joint forma-
tions. Our results showed that as the iteration amount increases, the
solution converges to the original solution as the normalized error
monotonically decreases. We have utilized our approach with four
distinct clustering/community detection algorithms (CNM, density
peaks, DBSCAN, and k-means) to analyze partition formation with
regards to error reduction and speed-up. In graph parameter analysis,
we discovered results showing a correlation between parameters and
normalized error results. We also further tested our iterative approach
for modeling 3-D human digestive anatomy for our VESS and VCoST
surgery simulators. As a future work of our study, we plan to evaluate
our approach with more comprehensive graph clustering approaches
such as Mean-Shift, Highly Connected Subgraphs, Affinity Propagation,
with further graph complexity parameters such as assortativity,

D. Demirel et al.

coreness, cliques, etc. We will also further validate the effectiveness of
POM-GAML with other regions such as shoulder, knee, elbow, etc.
physiology where anatomy comprises many cartilages, joints and very
elastic membranes.

Declaration of competing interest
The authors declare that they have no conflict of interest.
Acknowledgment

This publication was made possible by the Arkansas INBRE program,
supported by a grant from the National Institute of General Medical
Sciences, P20 GM103429 from the National Institutes of Health. This
project was also supported by NIH/NIAMS R44AR075481-01, NIH/NCI
5R01CA197491 and NIH/NHLBI NIH/NIBIB 1R01EB025241,
R56EB026490.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.compbiomed.2020.103695.

References

[1] D. Demirel, A. Yu, S. Baer-Cooper, T. Halic, C. Bayrak, Generative anatomy
modeling language (GAML), Int. J. Med. Robot. Comput. Assist. Surg. 13 (4) (2017)
el1813.

M.J. Powell, A fast algorithm for nonlinearly constrained optimization
calculations, Numerical analysis (1978) 144-157. Springer.

M.J. Powell, A direct search optimization method that models the objective and
constraint functions by linear interpolation, in: Advances in Optimization and
Numerical Analysis, Springer, 1994, pp. 51-67.

D. Demirel, B. Cetinsaya, T. Halic, S. Kockara, S. Ahmadi, Partition-based
optimization model for generative anatomy modeling language (POM-GAML),
BMC Bioinf. 20 (2) (2019) 105.

A. Clauset, M.E. Newman, C. Moore, Finding community structure in very large
networks, Phys. Rev. E 70 (6) (2004), 066111.

J. MacQueen, Some methods for classification and analysis of multivariate
observations, in: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability 1, 1967, pp. 281-297.

A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks, Science
344 (2014) 1492-1496, 6191.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise, 1996, pp. 226-231.

D.M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill Companies,
1972.

S. Anand, W.-N. Chin, S.-C. Khoo, A lazy divide and conquer approach to constraint
solving, in: 14th IEEE International Conference on Tools with Artificial
Intelligence, 2002. (ICTAI 2002). Proceedings, 2002, pp. 91-98.

C.-J. Tsai, A.K. Katsaggelos, Dense disparity estimation with a divide-and-conquer
disparity space image technique, IEEE Trans. Multimed. 1 (1) (1999) 18-29.

M. Reimann, K. Doerner, R.F. Hartl, “ D-ants, Savings based ants divide and
conquer the vehicle routing problem, Comput. Oper. Res. 31 (4) (2004) 563-591.
B.E. Gillett, L.R. Miller, A heuristic algorithm for the vehicle-dispatch problem,
Oper. Res. 22 (2) (1974) 340-349.

(2]

[3]

[4]

[5]
[6]

[7]
[8]
[91

[10]

[11]
[12]

[13]

11

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]

Computers in Biology and Medicine 119 (2020) 103695

K. Doerner, M. Gronalt, R.F. Hartl, M. Reimann, C. Strauss, M. Stummer,
SavingsAnts for the vehicle routing problem, in: Workshops on Applications of
Evolutionary Computation, 2002, pp. 11-20.

P. Toth, D. Vigo, The granular tabu search and its application to the vehicle-routing
problem, Inf. J. Comput. 15 (4) (2003) 333-346.

F. Glover, Future paths for integer programming and links to artificial intelligence,
Comput. Oper. Res. 13 (5) (1986) 533-549.

L.W. Mackey, M.I. Jordan, A. Talwalkar, Divide-and-conquer matrix factorization,
Adv. Neural Inf. Process. Syst. (2011) 1134-1142.

K.-C. Toh, S. Yun, An accelerated proximal gradient algorithm for nuclear norm
regularized linear least squares problems, Pac. J. Optim. 6 (2010) 15, 615-640.
R.E. Burkard, E.-Y. Yao, Constrained partitioning problems, Discrete Appl. Math.
28 (1) (1990) 21-34.

D.L. Neel, N.A. Neudauer, Matroids you have known, Math. Mag. 82 (1) (2009)
26-41.

B.W. Wah, Y. Chen, Constraint partitioning in penalty formulations for solving
temporal planning problems, Artif. Intell. 170 (3) (2006) 187-231.

Y. Yuan, Subspace techniques for nonlinear optimization, in: Some Topics in
Industrial and Applied Mathematics, World Scientific, 2007, pp. 206-218.

F.A. Tillman, C.-L. Hwang, W. Kuo, Optimization techniques for system reliability
with RedundancyHA review, IEEE Trans. Reliab. 26 (3) (1977) 148-155.

H. Everett III, Generalized Lagrange multiplier method for solving problems of
optimum allocation of resources, Oper. Res. 11 (3) (1963) 399-417.

M.J. Box, A new method of constrained optimization and a comparison with other
methods, Comput. J. 8 (1) (1965) 42-52.

L.S. Lasdon, R.L. Fox, M.W. Ratner, Nonlinear optimization using the generalized
reduced gradient method, Rev. Fr. Autom. Inform. Rech. Opérationnelle Rech.
Opérationnelle 8 (V3) (1974) 73-103.

Y. Yuan, A review on subspace methods for nonlinear optimization, in: Proceedings
of the International Congress of Mathematics, 2014, pp. 807-827.

B. Cetinsaya, M.A. Gromski, S. Lee, Z. Xia, D. Demirel, T. Halic, C. Bayrak,

C. Jackson, S. De, S. Hegde, J. Cohen, M. Sawhney, S.N. Stavropoulos, D.B. Jones,
A task and performance analysis of endoscopic submucosal dissection (ESD)
surgery, Surg. Endosc. 33 (2) (Feb. 2019) 592-606.

J.M. Hernéndez, P. Van Mieghem, Classification of Graph Metrics, Delft Univ.
Technol. Mekelweg Neth., 2011, pp. 1-20.

R. Albert, H. Jeong, A.-L. Barabasi, Internet: diameter of the world-wide web,
Nature 401 (6749) (1999), 130.

R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czech. Math. J. 26
(2) (1976) 283-296.

G. Chartrand, D. Erwin, G.L. Johns, P. Zhang, Boundary vertices in graphs, Discrete
Math. 263 (1-3) (2003) 25-34.

P. Van Mieghem, Performance Analysis of Communications Networks and Systems,
Cambridge University Press, 2009.

M.A. Nascimento, J. Sander, J. Pound, “Analysis of SIGMOD’s co-authorship graph,
ACM Sigmod Rec. 32 (3) (2003) 8-10.

J.T. Pastor, J.L. Ruiz, I. Sirvent, An enhanced DEA Russell graph efficiency
measure, Eur. J. Oper. Res. 115 (3) (1999) 596-607.

S. Achard, E. Bullmore, Efficiency and cost of economical brain functional
networks, PLoS Comput. Biol. 3 (2) (2007) el7.

D.J. Watts, S.H. Strogatz, “Collective dynamics of ‘small-world networks, nature
393 (6684) (1998) 440.

T. Schank, D. Wagner, Approximating Clustering-coefficient and Transitivity.
Universitat Karlsruhe, Fakultat fiir Informatik, 2004.

V. Latora, M. Marchiori, Efficient behavior of small-world networks, Phys. Rev.
Lett. 87 (19) (Oct. 2001) 198701.

B. Ek, C. VerSchneider, D.A. Narayan, Global efficiency of graphs, AKCE Int. J.
Graphs Comb. 12 (1) (Jul. 2015) 1-13.

B. Cetinsaya, M.A. Gromski, S. Lee, Z. Xia, M. Turkseven, D. Demirel, T. Halic,
C. Bayrak, C. Jackson, S. De, Design of virtual endoluminal surgery simulator
(VESS): colorectal endoscopic submucosal dissection training module, in: American
Journal of Gastroenterology vol. 112, 2017, pp. S452-5453.

J. Canny, A computational approach to edge detection, in: Readings in Computer
Vision, Elsevier, 1987, pp. 184-203.

https://doi.org/10.1016/j.compbiomed.2020.103695
https://doi.org/10.1016/j.compbiomed.2020.103695
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref1
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref1
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref1
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref2
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref2
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref3
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref3
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref3
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref4
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref4
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref4
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref5
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref5
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref6
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref6
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref6
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref7
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref7
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref8
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref8
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref9
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref9
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref10
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref10
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref10
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref11
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref11
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref12
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref12
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref13
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref13
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref14
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref14
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref14
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref15
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref15
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref16
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref16
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref17
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref17
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref18
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref18
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref19
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref19
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref20
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref20
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref21
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref21
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref22
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref22
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref23
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref23
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref24
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref24
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref25
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref25
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref26
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref26
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref26
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref27
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref27
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref28
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref28
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref28
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref28
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref29
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref29
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref30
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref30
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref31
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref31
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref32
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref32
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref33
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref33
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref34
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref34
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref35
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref35
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref36
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref36
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref37
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref37
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref38
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref38
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref39
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref39
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref40
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref40
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref41
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref41
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref41
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref41
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref42
http://refhub.elsevier.com/S0010-4825(20)30084-6/sref42

	A partition-based optimization model and its performance benchmark for Generative Anatomy Modeling Language
	1 Background
	1.1 Contributions of this work

	2 Methods
	2.1 Virtual joints
	2.2 Iterative approach
	2.3 Graph parameters
	2.3.1 Distance metrics
	2.3.2 Connection metrics
	2.3.3 Constraint metrics

	2.4 Clustering and community detection

	3 Results
	3.1 Time and error
	3.2 Parameter analysis

	4 Discussion
	5 Conclusion
	Declaration of competing interest
	Acknowledgment
	Appendix A Supplementary data
	References

