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A B S T R A C T   

Background: This paper presents a novel iterative approach and rigorous accuracy testing for geometry modeling 
language - a Partition-based Optimization Model for Generative Anatomy Modeling Language (POM-GAML). 
POM-GAML is designed to model and create anatomical structures and their variations by satisfying any imposed 
geometric constraints using a non-linear optimization model. Model partitioning of POM-GAML creates smaller 
sub-problems of the original model to reduce the exponential execution time required to solve the constraints in 
linear time with a manageable error. 
Method: We analyzed our model concerning the iterative approach and graph parameters for different constraint 
hierarchies. The iteration was used to reduce the error for partitions and solve smaller sub-problems generated by 
various clustering/community detection algorithms. We empirically tested our model with eleven graph pa
rameters. Graphs for each parameter with increasing constraint sets were generated to evaluate the accuracy of 
our method. 
Results: The average decrease in normalized error with respect to the original problem using cluster/community 
detection algorithms for constraint sets was above 63.97%. The highest decrease in normalized error after five 
iterations for the constraint set of 3900 was 70.31%, while the lowest decrease for the constraint set of 3000 was 
with 63.97%. Pearson correlation analysis between graph parameters and normalized error was carried out. We 
identified that graph parameters such as diameter, average eccentricity, global efficiency, and average local 
efficiency showed strong correlations to the normalized error. 
Conclusions: We observed that iteration monotonically decreases the error in all experiments. Our iteration re
sults showed decreased normalized error using the partitioned constrained optimization by linear approximation 
to the non-linear optimization model.   

1. Background 

Generative Anatomy Modeling Language (GAML) is particularly 
used to generate 3-D virtual human anatomy variations on a web 
browser via the use of WebGL (3-D rendering application programming 
Interface for web browsers) technology. In GAML, anatomical con
straints can be incorporated prior to any geometry modification to 
achieve authentic 3D models [1]. The purpose of GAML is to create a 
platform for the rapid generation of variations in anatomical or 

biological structures by fulfilling their structural constraints. These 
constraints can stem from anatomy or any restrictions imposed by users 
(e.g. physicians or researchers). Our ultimate goal is to minimize any 
need for bio-illustrators and provide a free platform where modeling and 
modification, with respect to the anatomy, can be performed at ease 
without any technical or modeling expertise. We often experience that 
even slight modifications over 3-D anatomy models require significant 
design reiterations. This is due to the fact that the accuracy of these 
models needs to be authenticated after each change done by expert 
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physicians to ensure the models are anatomically valid. However, GAML 
could be able to make modifications on 3-D models respecting the cor
rectness of the anatomy/biostructure with the imposed constraints. The 
authentic model generation will significantly increase the efficiency of 
the model for surgical simulation use. Design and modeling of such an 
anatomically authentic 3-D model require significant man-hours 
including back and forth modifications of the model between medical 
experts and bio-illustrators [1]. 

GAML uses Powell’s non-linear derivative-free constrained and non- 
linear optimization solver called Constrained Optimization by Linear 
Approximation (COBYLA) [2,3] to satisfy anatomy (geometry) con
straints. GAML provides linear solution times up to 100 constraints and 
exhibits exponential time beyond that. We proposed Partition-based 
Optimization Model for Generative Anatomy Modeling Language 
(POM-GAML) [4] in our previous work. POM-GAML successfully de
creases the exponential execution time to linear time for GAML. In a 
scene with the twenty-five 3-D models and a total of 160,392 vertices 
with 5000 constraints, the speed up was calculated as 2689-fold and the 
normalized error was calculated as less than 0.1% using POM-GAML. 
However, the error reduction was not the primary focus of these pre
vious works. The error was within the acceptable error margin and 
showed no noticeable differences compared with the actual results. 

POM-GAML is used to partition the optimization problem into sub- 
problems by introducing additional virtual constraints for each sub- 
problem. Using various community detection algorithms, Clauset, 
Newman, and Moore (CNM) [5], k-means clustering [6], density peaks 
clustering [7], and density-based spatial clustering of applications with 
noise (DBSCAN) [8], we find possible candidate nodes for a split. Each 
split is carried out on the constraint hierarchy which is formed 
depending on the connectivity of joints with these constraints. After the 
split operation, two separate geometries and new optimization models 
are introduced. Partitioning is imperative in enabling the concurrent 
computation of the solution for the sub-problems. The generation of the 
sub-problems removes the dependency while retaining the original 
optimization problem. In large constraint sets, solving the sub-problems 
of a problem compared to solving the original problem decreases the 
exponential execution time to linear time. In POM-GAML, the solution 
was computed once for each sub-problem to achieve near real-time 
performance. The overall workflow of POM-GAML is seen in Fig. 1. 

In general, regarding non-linear programming problems, there is no 
single algorithm that is more favorable than the other approaches [9]. 
Partitioning a problem is a widely applied technique; one of the 
well-studied approaches is the Divide and Conquer approach. Divide and 
Conquer creates extra computations for each sub-problem due to its 
recursive nature [10,11]. Anand et al. [10] use a backtracking algorithm 
to reduce additional computations. In this approach, until the global 
constraint is satisfied, sub-problems were solved recursively using 
backtracking and combining solutions. By eliminating redundant 
checks, the execution speed can be increased. Reimann et al. [12] 
introduced D-Ants, which applies problem decomposition to the vehicle 

routing problem. For efficiency, the number of clusters were predefined 
and the clustering was generated with the sweep algorithm [13] which 
then solved with the savings based on the ant system framework [14]. In 
regards to the performance benchmark, the D-Ants algorithm was slower 
than the granular tabu search [15], which uses candidate lists with tabu 
search [16]. Mackey et al. [17] introduced divide-factor-combine for 
noisy matrix factorization in an application for video background 
modeling context. In this work, the matrix is randomly divided into 
sub-problems and the sub-problems are computed in parallel. The 
speedup is twenty times faster than the proximal gradient algorithm, 
which uses unconstrained non-smooth convex optimization [18]. 

Furthermore, for constraint-partitioning, Burkard et al. [19] 
considered the partition sets as bases of matroids. Matroid is a finite set 
that generalizes the idea of linear independence [20]. Burkard et al. [19] 
extended a solution that can perform a greedy-like algorithm repeatedly 
for matroids. The complexity of the algorithm is O(k2) while all given 
matroids have the same structure with k partitioning problems. In 
addition, when the involved matroids are not all equal, they need to find 
good approximation algorithms. Furthermore, certain problems, such as 
the matrix decomposition problem, have a special sequence for mat
roids, where the complexity is in polynomial time. Wah et al. [21] 
presented a theory of penalty methods for mixed-integer, discrete, and 
continuous optimization, and its application in solving temporal plan
ning problems partitioned by the constraints. Their approach reduces 
the complexity of non-linear constrained planning problems. Since each 
sub-problem has a smaller number of constraints, their algorithm leads 
to sub-problems that are simpler to solve. 

Another approach to solve large non-linear optimization problems is 
sub-space techniques [22]. Sub-space techniques are used to reduce the 
computation cost and memory size. According to Refs. [23], the 
generalized Lagrangian function method [24], modified sequential 
simplex pattern search [25], and the generalized reduced gradient 
methods [26] are noted as useful on large-scale non-linear programming 
problems. Sequential quadratic programming is a sub-space technique 
that solves non-linearly constrained problems by minimizing quadratic 
approximations and applying the Lagrangian function to the linearized 
constraints [27]. 

1.1. Contributions of this work 

In this work, we introduce an iterative approach where the sub- 
problems are expected to converge to an original solution that signifi
cantly lowers the error in POM-GAML. In addition to the iterative 
approach, we tested the optimization model within the spectrum of 
clustering techniques and hierarchical graph parameters. We wanted to 
understand the response of the optimization model with distinct clusters 
of constraints and joints/constraints hierarchy graphs. We believed that 
the formation of the partitions might have an impact on the solution of 
the optimization model. We hypothesize that the clustering and parti
tioning the optimization model and then solving in an iterative manner 
among the partitions could further improve the error. We thereby 
derived and created various joint hierarchies using graph connectivity 
parameters to generate test cases for our hypothesis. We wanted to 
investigate the influence of joints/constraints hierarchy in our approach 
using graph parameters and tested with common clustering techniques. 
We experimented with constraint sets varying from 2000 to 4200 and 
determined the errors. We used our iterative approach on human 
digestive anatomy models for real-life cases as well. We tested our 
models used for Virtual Endoluminal Surgery Simulator (VESS) [28]for 
Endoscopic Submucosal Dissection (ESD) and Virtual Colorectal Surgi
cal Trainer (VCoST) training and assessment using 4200 constraints in a 
scene with five 3-D models (large intestine, small intestine, stomach, 
liver, and spleen) with a total of 80,847 vertices. 

Fig. 1. Overall architecture of POM-GAML. Dashed arrows show that either 
step can be performed, and solid arrows show the order of operations. 
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2. Methods 

In this section, we briefly describe the model and present the itera
tive approach followed by a description of graph parameterization 
metrics for the generation of test cases. 

2.1. Virtual joints 

Joint is an abstract term that holds the movement information and 
constraints for a region of the 3-D model. The dimension of a joint in
dicates the region of interest that can be enlarged or contracted over the 
3-D model. This region affects the spatial position of the vertices when 
the joint undergoes any motion. Joints can be linked together to form 
more complex structures. The formation of these joints is represented in 
a hierarchical graph structure. POM-GAML [4] uses joint graphs to 
model anatomies or biostructures. In our joint graph, joints are used as 
nodes and constraints/connections are used as edges between the nodes. 
A joint graph can be formally defined as; G ¼ ðV; EÞ; E⊆ ​ fðJi; JkÞ : Ji;

Jj 2 V g, where ðJi;Jj) is a tuple of joints, V is the vertex set, and E is the 
edge set of 2-element subsets of the vertex set V. 

The optimization model (as seen in Table 1) tries to compute the 
nearest possible location to the desired motion of each joint. With the 
desired location of a joint or multiple joints given, our optimization 
model computes the optimal solution that satisfies all the other joints’ 
constrained motions in the joint hierarchy graph. 

In our optimization model, pi is a 3-D position of a joint (Ji), where Ji 
can be an arbitrary node (vertex) in or a node attached to a 3-D Mesh 
(M). Number of joints (N), can be dynamically modified by adding and 
removing joints. In between each joint couple Ji and Jj with corre
sponding 3-D pi and pj positions, there could be up to four different types 
of constraints (Equations 1-4 in Table 1) to restrain the movement of a 
node. In our model, unique constraint sets are formed for each constraint 
type. For instance, Equation 1 in our optimization model is defined for 
the absolute distance constraint and set A indicates the set of absolute 
distance constraints. Equation 2 and 2a are for the angle constraints and 

Table 1 
Optimization model for partitions. 

Fig. 2. Connected joints.  

Fig. 3. Partition of joints. Yellow joints are virtual joints and red lines represent 
the possible motion of the joints. 
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set B indicates the set of angle constraints. Equations 3-4 are for the 
flexibility constraints and set C is designated for the flexibility con
straints. Sets At ;Bt ;Ct ; and ​ Dt indicate the partitioned sets for sets A; B;
C; and D, respectively where t is the partition. Distij is the original dis
tance between joints Ji and Jj and Δdmax is the maximum displacement 
allowed between the joint couple Ji and Jj using the stiffness ratio k. In 
Equation 2, θij is the maximum angle that Ji is allowed to pivot about pj, 
and pio. For the angle constraint, pio is the original position of pi. In 
Equation 2a, ðpio � pjÞaxis and ðpi � pjÞaxis are the directional vectors in 

the x, y, or z axes to accommodate any lock along the axis of rotation. 
The direction vector between pio and pivot point of pj is ðpio � pjÞ. The 
direction vector between pi and pivot point of pj is ðpi � pjÞ. 

We partitioned the problem into sub-problems by introducing the 
concept of virtual joints. Partitioning requires a split to remove the 
connectivity among the partitions. In each split operation, the joints at 
the split location are duplicated. Subsequently, the edge and the con
straints between the joints are removed. The duplicated nodes will serve 
as virtual joints (as shown in Fig. 2 and Fig. 3). The virtual joints carry 
information regarding the disconnected joints and apply the constraints 
with other partition to its sub-problem. In the model, V is the set of 
virtual joints; vi is the virtual joint of joint pi, and vj is the virtual joint of 
joint pj. Pt is the partition and none of the joints in one partition can be 
shared or exist in another partition unless it is a virtual joint. In Equation 
5, r is the radius of the cone defined for a virtual joint, while aij is the 
angle between joints Ji and Jj. The angle of the cone is preset to 30�and 
change in preset angle shows no significant difference in the constraint 
sets over 50�. 

2.2. Iterative approach 

In our iterative approach, the optimization model is run for each 
partition. For each iteration, joints and virtual joints with updated 
constraint, connection, position, and partition information are passed 
into the optimization model. From joints and virtual joints, constraint 
information is gathered. The feasible region for each joint in each 
partition is calculated and the geometric boundaries are checked. After 
each iteration, properties of all joints and virtual joints such as 
constraint, connection, and position information are updated. Virtual 
joint locations are synchronized and updated at the end of each iteration 
at the synchronization step. The synchronization of the virtual joints is 
performed by averaging their current locations. After the first iteration, 
the 3-D location of joint Ji is p1i and after the second iteration, the 3-D 
location of joint Ji is p2i, where jp1i þ p2ij � 0. The derivative of the 
position and summative positional change of the partition joints with 
respect to the iteration can be also used for updating the virtual joint. We 
iteratively compute the solution where the virtual joints gradually 
converge to each other. For the constraint sets varying from 2000 to 
4,200, we have utilized our iteration-based method. The next section 
describes these joint graph parameters that are used to generate various 
complexities that enable us to test and validate our iterative approach. 

To summarize our approach, we traverse through our joint hierarchy 
and use various community detection/clustering approaches to seek 
possible candidate nodes for partitioning. Once candidate nodes are 
determined, they are duplicated in the hierarchy. This duplication 
generates virtual nodes. The virtual nodes contain information 
regarding disconnected joints and mimic the original node by imposing 
original constraints. The duplication and followed by the split operation 
continues until the constraints between the partitions are completely 
separated. These operations will result in separate partitions where no 
nodes are shared in their respective joint hierarchies. In the iterations, 
solutions to each sub-problem; optimization problem pertaining to each 
partition, is solved separately and iteratively. The synchronization, in
formation exchange phase through virtual joints, is performed at each 
iteration to reduce the overall error. 

2.3. Graph parameters 

For testing purposes, we require a variety of joint hierarchies to 
analyze the impact of the joints and constraints distribution over the 
optimization model. We aim to perform benchmark tests using these 
hierarchies to quantify the performance and error. The motivation of 
creating these cases has two folds; we want to eliminate any bias in the 
test cases, where the model could coincidentally perform well in one 
hierarchy and poor on the other one. Secondly, we want to ensure that 

Table 2 
Distance properties and corresponding ranges.  

Distance Properties 

Constraint 
Set of 

Radius Diameter Min # of 
Central 
Vertex 

Min # of 
Peripheral 

vertex 

Average 
eccentricity 

3000 x � 2 4�x � 6 x � 21 x � 5 x � 4.0 
3300 5�x �

6 
7�x � 9 5�x � 10 x � 5 6.01�x �

8.0 
3600 3�x �

4 
7�x � 9 x � 4 x � 5 4.01�x �

6.0 
3900 x � 7 x � 10 x � 4 x � 5 x � 8.01 
4200 5�x �

6 
7�x � 9 5�x � 10 x � 5 6.01�x �

8.0 
2000 x � 2 4�x � 6 5�x � 10 6�x � 10 x � 4.0 
2200 3�x �

4 
4�x � 6 5�x � 10 6�x � 10 x � 4.0 

2400 x � 2 x � 3 x � 21 11�x � 15 x � 4.0 
2600 5�x �

6 
7�x � 9 11�x �

20 
x � 16 6.01�x �

8.0 
2800 x � 2 x � 3 x � 21 x � 5 x � 4.0  

Table 3 
Connection properties and corresponding ranges.  

Connection Properties 

Constraint 
Set of 

Characteristic 
Path Length 

Global 
Efficiency 

Average 
Local 

Efficiency 

Clustering 
Coefficient 

3000 x � 2.0 x � 0.71 x � 0.61 x � 0.61 
3300 3.01�x � 4.0 0.31�x �

0.5 
x � 0.2 x � 0.2 

3600 3.01�x � 4.0 0.31�x �
0.5 

x � 0.2 x � 0.2 

3900 x � 4.01 0 � 0.3 x � 0.2 x � 0.2 
4200 3.01�x � 4.0 0.31�x �

0.5 
x � 0.2 x � 0.2 

2000 x � 2.0 x � 0.71 x � 0.61 x � 0.61 
2200 2.01�x � 3.0 0.51�x �

0.7 
0.21�x � 0.4 0.21�x � 0.4 

2400 x � 2.0 x � 0.71 x � 0.61 x � 0.61 
2600 3.01�x � 4.0 0.31�x �

0.5 
0.41�x � 0.6 0.41�x � 0.6 

2800 x � 2.0 x � 0.71 x � 0.61 x � 0.61  

Table 4 
Constraint metrics and corresponding values used.  

Constraint Properties 

Constraint Set of Constraints per Joint # of Joints 

3000 50 60 
3300 55 60 
3600 60 60 
3900 65 60 
4200 70 60 
2000 50 40 
2200 55 40 
2400 60 40 
2600 65 40 
2800 70 40  
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the optimization model can be applicable regardless of the hierarchy 
formation. We also want to analyze the error and error distribution 
respecting hierarchy generation parameters. 

We used graph generation parameters for automatically generating 
joint hierarchies. These parameters are categorized into three metrics; 
distance, connection, and constraint. For each parameter, four different 
ranges (e.g. easy, mild, moderate, and difficult complexity terms used 
for readability) were used to generate increasingly complex constraint 
graphs. We will briefly describe these metrics. 

2.3.1. Distance metrics 
Radius [29], diameter [30], minimum number of central vertices 

[31], minimum number of peripheral vertices [32], and average ec
centricity [33] were used as distance metrics. Distance metrics were 
derived from the eccentricity of each vertex. The eccentricity εðVÞ of a 

vertex V is the longest distance between V and any other joint node in 
the graph. The radius r of a graph is the minimum eccentricity of any 
node, r ¼ minðεðVÞÞ. The diameter d of a graph is the maximum eccen
tricity of any joint node in the graph, d ¼ maxðεðVÞÞ. To find the 
diameter of a graph, we find the shortest path between each pair of 
nodes. The greatest length of any of these paths is the diameter of the 
graph. A central node in a graph of radius r is one whose eccentricity is r 
and that is a node that achieves the radius such that εðVÞ ¼ r. Peripheral 
nodes are defined as the nodes that are d distance away from some other 
node. Formally, V is peripheral if εðVÞ ¼ d. Table 2 shows the distance 
properties and corresponding ranges. 

2.3.2. Connection metrics 
Characteristic path length [34], global efficiency [35], average local 

efficiency [36] and clustering coefficient [37,38] were used as graph 

Fig. 4. Normalized iteration graphs for constraint sets 2000, 2200, and 2400.  
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creation metrics. The characteristic path length (or the average path 
length) is the average of all the distances between the node pairs( ðVi;

VjÞ; i 6¼ j ) in the graph, where i and j are nodes in the graph. The global 
efficiency is the average of all the reciprocals of the non-zero distances in 
a graph. The local efficiency is the average efficiency of the local sub
graphs. Efficiency is defined as εi;j ¼

1
distanceði;jÞ; i 6¼ j, [39,40]. A clus

tering coefficient is a degree of connectivity measure of two nodes that 
are connected to the same node. Clustering coefficient of a graph is the 
average of the local clustering coefficients for all nodes in the graph. The 
clustering coefficient is defined as C ¼ 1

N
P

n2N

yn�
dn
2

�, where N is the list of 

all nodes, yn is the number of links between neighbors of a node n 2 N, 
and dn is the degree of a node n 2 N. Table 3 shows the connection 
metrics and corresponding ranges. 

2.3.3. Constraint metrics 
In GAML, a joint holds constraint and attachment information. 

Constraints per joint and number of joints were used as constraint 
metrics for the graph generation. The numbers used in constraint met
rics are derived from our previous empirical tests where the average 
constraints per joints tabulated here were sufficient for modeling com
plex human anatomy. The number of joints were set to 40 and 60, while 
constraints per joint were modified from 50 to 70. The reason is to 
determine graph test cases for the number of joints and constraints per 
joints separately. Table 4 shows the constraint metrics and corre
sponding values. 

2.4. Clustering and community detection 

We use hierarchical joint graph structure to partition the 

optimization model. Before we partition the problem, we determine the 
optimal location for the splitting operation. The assumption here is that 
in a graph the joint communities with higher constraint density could be 
good candidates for model partition. As a result, we used common 
partition algorithms such as; CNM [5], k-means clustering [6], density 
peaks clustering [7], and DBSCAN [8] to detect clusters/communities. 
We would like to note that we use cluster and community terms inter
changeably to stay with the terminology in both graph and data mining 
disciplines. 

CNM is an agglomerative hierarchical method based on greedy 
optimization. In CNM, modularity is used as a measure to calculate the 
strength of communities. Modularity calculates the divisibility of a 
community by checking the ratio of the number of edges in each com
munity to the edges between the communities. Density peaks clustering 
is a density-based clustering approach. In density peaks, it is assumed 
that cluster centers are away from other points with high densities and 
cluster centers have a higher density than their neighbors. For each data 
point in density peaks, we used two parameters local density(ρ) and the 
distance of each point from points belonging to higher density. The 
distance parameter was populated from the connectivity of joints in the 
graph. Another clustering approach used is DBSCAN. DBSCAN uses 
parameters (MINPTS, ε, DISTFUNC) to find highly dense areas of joints. 
MINPTS expresses the amount of joints needed in the radius (ε) to 
specify the area as a high density area. DISTFUNC is the distance func
tion between joints. In our case, we used 2 for MINPTS to minimize 
noise, we selected 5 (DBSCAN5) and 10 (DBSCAN10) for the radius(ε) of 
connectivity of joints in the graph, and we used connectivity between 
joints as the DISTFUNC. The last technique used for joint clustering is k- 
means. In the k-means algorithm, n-dimensional data is partitioned into 
k clusters. Cluster number “k” was set to the same number of clusters as 
DBSCAN clusters. 

Fig. 5. Normalized iteration graphs for constraint sets 2600 and 2800.  
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After the graph structure is created for the scene, the communities 
need to be detected before the partitioning and iteration. For the 
selected community detection/clustering algorithm, parameters are 
given as an input. Once the communities/clusters are detected, the edges 
between the communities are deleted and virtual joints are added for 
each separated joint couple. 

3. Results 

3.1. Time and error 

For each constraint set and clustering/community detection algo
rithm, we performed five iterations. We observed that further iterations 
beyond five do not significantly decrease the error percentage. Each 
iteration was performed five times to determine the average computa
tion time. The magnitude of the test scenes was 40.86-unit distance, 

which was used to compute the normalized error. The normalized error 
was computed with regard to the dimension of the scene (Equation (8)). 
In Equation (8), Partition is the 3-D position of the joints using the par
titions, NonPartition is the 3-D position of the joints without the parti
tions, and SceneMag is the scene magnitude. 

%Normerror¼Avg

0

B
@

�
�
�
�
�
�
�

Partition� NonPartition
NonPartition

SceneMag

�
�
�
�
�
�
�
i

1

C
Ax100 (8) 

The normalized error in all constraint sets and all clustering/com
munity detection algorithms decreased as the number of iterations has 
increased (as seen in Figs. 4–7). In the first iteration for the smallest 
constraint set, constraint set of 2,000, the normalized error varied from 
0.53% to 0.46%. The highest normalized error was for CNM while 
DBSCAN10 had the lowest normalized error. At the fifth and final 

Fig. 6. Normalized iteration graphs for constraint sets 3000, 3300, and 3600.  
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Fig. 7. Normalized iteration graphs for constraint sets 3900 and 4200.  

Table 5 
The decrease in error percentage from one to five iterations.  

Decrease in error percentage (%) 

Constraint Set of CNM k-means5 k-means10 DBSCAN5 DBSCAN10 Density Peaks 

3000 63.07 70.53 60.85 61.64 63.76 56.50 
3300 69.07 70.04 65.27 68.24 64.78 70.00 
3600 67.18 68.54 65.20 63.23 71.39 58.30 
3900 65.57 71.17 73.34 70.13 71.35 76.92 
4200 63.16 66.38 61.76 69.75 63.26 70.00 
2000 65.19 69.49 65.72 66.80 63.25 67.44 
2200 66.13 69.08 64.20 68.39 66.90 70.45 
2400 68.72 63.71 62.74 64.50 61.36 62.16 
2600 68.37 63.31 67.05 70.13 59.08 61.76 
2800 65.85 60.75 67.40 70.88 63.03 62.96  

Table 6 
Speed-up(x-times) for each community detection/clustering algorithm compared to non-partitioned performance.  

Constraint Set of Community Detection/Clustering Algorithms 

CNM k-means5 k-means10 DBSCAN5 DBSCAN10 Density Peaks 

3000 16.12 210.18 324.97 187.79 9.17 106.35 
3300 12.76 290.30 26.82 223.32 5.12 5.59 
3600 16.43 285.09 20.75 241.57 3.04 8.38 
3900 81.67 219.89 18.18 196.12 2.68 7.45 
4200 124.78 278.20 24.98 143.42 2.99 7.79 
2000 9.52 99.63 31.79 96.32 18.77 43.62 
2200 7.36 89.50 29.48 121.84 19.91 29.44 
2400 8.38 100.28 25.82 124.63 14.82 23.58 
2600 9.02 106.60 28.67 130.74 10.82 17.35 
2800 10.54 131.66 28.30 8.87 138.30 38.73  
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iteration, the normalized error varied between 0.18% (CNM) to 0.15% 
(k-means5). After five iterations, the constraint set of 2000 constraints 
was the only constraint set that k-means5 had the lowest error per
centage. Even though k-means5 had the highest error percentages in the 
first iteration for the constraint sets 2,400, 2,600, 2,800, 3,000, 3,600, 
and 4,200, in constraint sets 2,000, 3,000, and 3300 k-means5 had the 
largest decrease in error percentage (as seen in Table 6). The results for 
k-means5 showed that having the highest error percentage for a specific 
constraint set (2,400, 2,600, 2,800, 3,000, 3,600, and 4200) did not 
account for the largest decrease in error percentage in the constraint sets 
(2,000, 3,000, and 3300). Table 5 shows the decrease in error percent
age in the iterations starting from one to five. Iteration one is similar to 
the results noted in our previous work, POM-GAML [4]. 

In the fifth iteration for constraint sets, 3,300, 3,900, and 4,200, 
CNM and DBSCAN10 had the same error percentages, 0.07%, 0.03%, 
and 0.03% respectively. In the first iteration for the largest constraint 
set; constraint set of 4,200, the normalized error varied from 0.19% to 
0.08%. The highest normalized error was for k-means5 while CNM had 
the lowest normalized error. The normalized error varied between 
0.03% (CNM and DBSCAN10) to 0.07% (k-means10). Out of all clus
tering/community detection algorithms CNM had the smallest differ
ence between the lowest and highest decrease in error percentage with 
6%, while density peaks had the highest difference with 20.42% (as seen 
in Fig. 8). In the fifth iteration, in the constraint sets; 2,600, 2,800, 
3,900, and 4,200, DBSCAN10 and density peaks had the same error 
percentages 0.10%, 0.13%, 0.03%, and 0.03% respectively. 

For time analysis, an Intel Core i7-5820 K CPU with 16 GB RAM and a 
GeForce GTX 970 GPU with the driver version 419.67 was used. Table 7 
shows the speed-up times for each partition algorithm for each 
constraint set. The maximum overall speed-up (compared to non- 

partitioned performance) was achieved with k-means5 for the 
constraint sets of 3,300, 3,600, 3,900, 4,200, and 2,000, with k-means10 
for the constraint set of 3,000, with DBSCAN5 for constraint sets of 
2,200, 2,400, and 2,600, and with DBSCAN10 for the constraint set of 
2800 (as seen in Table 6). 

3.2. Parameter analysis 

We aim to understand the correlation between graph parameters and 
computed errors to recognize model behavior for large constraints. We 
run the Pearson’s correlation test for each graph parameter against the 
normalized error for each constraint set and iteration. For the Pearson 
correlation test, r value is the correlation coefficient and p value is the 
significance. According to our results, the minimum number of central 
and peripheral nodes did not show a strong correlation to the normal
ized error results. Pearson’s correlation values, r, for the minimum 
number of central nodes varied between 0.32 (p ¼ 0.367) to 0.656 (p ¼
0.039) while the minimum number of peripheral nodes varied between 
0.51(p ¼ 0.132) to 0.65 (p ¼ 0.042). The rest of the parameters had at 
least an r value of 0.6 or � 0.6 against the normalized error results. For k- 
means5 normalized error results, diameter, and average eccentricity had 
a strong negative correlation for each iteration (as seen in Table 7). For 
DBSCAN5 normalized error results, global efficiency, average local ef
ficiency, and clustering coefficient had a strong positive correlation, 
while diameter had a strong negative correlation for each iteration (as 
seen in Table 7). For DBSCAN10, normalized error results and diameter 
had a strong negative correlation for each iteration (as seen in Table 7). 
For density peaks normalized error results, average local efficiency, and 
clustering coefficient had a strong positive correlation for each iteration 
(as seen in Table 7). 

Fig. 8. Differences between the lowest and highest decrease in error percentage for each clustering/community detection algorithm.  

Table 7 
Strong Pearson correlations of graphs parameters with the error.  

Algorithm Graph Parameter Iteration 

1 2 3 4 5 

k-means5 Diameter � 0.83(0.003) � 0.87(0.001) � 0.89(0.0006) � 0.87(0.001) � 0.84(0.0024) 
Average Eccentricity � 0.78(0.0078) � 0.82(0.0037) � 0.83(0.0029) � 0.81(0.0045) � 0.77(0.0092) 

DBSCAN5 Diameter � 0.78(0.0078) � 0.78(0.0078) � 0.80(0.0055) � 0.80(0.0055) � 0.81(0.0045) 
Global efficiency 0.79(0.0065) 0.78(0.0078) 0.80(0.0055) 0.81(0.0045) 0.83(0.0029) 

Average Local Efficiency 0.77(0.0092) 0.77(0.0092) 0.80(0.0055) 0.81(0.0045) 0.81(0.0045) 
Clustering Coefficient 0.79(0.0065) 0.79(0.0065) 0.82(0.0037) 0.82(0.0037) 0.82(0.0037) 

DBSCAN10 Diameter � 0.75(0.012) � 0.77(0.0092) � 0.80(0.0055) � 0.80(0.0055) � 0.77(0.0092) 
Density Peaks Average Local Efficiency 0.80(0.0049) 0.82(0.0035) 0.78(0.0083) 0.77(0.0087) 0.79(0.0072) 

Clustering Coefficient 0.81(0.0045) 0.83(0.0033) 0.78(0.0076) 0.79(0.0071) 0.80(0.0058) 

P-values indicated in parenthesis. 
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4. Discussion 

Based on our results, the diameter has a significant impact on the 
error. We believe that efficient partitioning of the joints is possible with 
a bigger diameter. As seen in the results section, k-means5, DBSCAN5, 
and DBSCAN10 have strong negative correlations between normalized 
error and diameter. Even though not strong, k-means10 (average r ¼
� 0.73), CNM (average r ¼ � 0.72), and density peak (average r ¼ � 0.71) 
algorithms all have negative correlations. Another graph parameter, 
clustering coefficient, shows the degree of nodes in a graph that is in
clined to cluster together. Between normalized error and clustering co
efficient, density peaks and DBSCAN5 showed strong positive 
correlations, while CNM (average r ¼ 0.69), k-means5 (average r ¼
0.79), k-means10 (average r ¼ 0.74), and DBSCAN10 (average r ¼ 0.73) 
showed positive correlations. These results imply that proper parti
tioning can significantly reduce the error. 

Different variations of anatomies in a virtual surgical simulator allow 
for surgeons to practice on a variety of difficult surgical scenarios. These 
variations are generated with our approach introduced in this study to 
ensure anatomical relevance. The digestive anatomy was constructed for 
our surgery simulations for ESD training and assessment, VESS [41] and 
VCoST. ESD is an endoscopic technique for en bloc resection of gastro
intestinal lesions bigger than >20 mm [28]. VCoST is a virtual trainer for 
colorectal surgery skills. We created a virtual scene of the digestive 
anatomy and attached joints equivalent to 4200 constraints. The scene 
had five 3-D models (large intestine, small intestine, stomach, liver, and 
spleen) related to the human digestive anatomy with a total of 80,847 
vertices. We executed nodal transformations for each model in the scene. 
Fig. 9a shows the 3-D scene with the joints after motion using the par
titioned iterative approach and non-partitioned optimization models. 
Arrows in Fig. 9a show the transformation motion (direction of the 
intended transformation), green circles represent five-iteration 

partitioned and red circles represent non-partitioned solver results. The 
visible red circle indicates an error at that location. The visual errors 
between our approach and non-partitioned solver results are not clearly 
noticeable to the eye. Therefore, we used the Canny edge detection al
gorithm [42] using MATLAB and marked the errors in the scene with red 
(also with red circles to point them out) as seen in Fig. 9b. 

5. Conclusion 

In this work, we introduced an iterative approach and performance 
benchmark for a Partition-based Optimization Model for Generative 
Anatomy Modeling Language (POM-GAML). POM-GAML is an anatomy 
modeling language that incorporates and solves a non-linear optimiza
tion model to create anatomically correct structures when the geometry 
undergoes any modifications. The optimization model in POM-GAML 
fulfills any requested variations by satisfying geometric constraints. 
This model can be used in any biological structure other than human 
anatomy. We experimented our approach with hierarchical graphs that 
are computationally generated cases representing various joint forma
tions. Our results showed that as the iteration amount increases, the 
solution converges to the original solution as the normalized error 
monotonically decreases. We have utilized our approach with four 
distinct clustering/community detection algorithms (CNM, density 
peaks, DBSCAN, and k-means) to analyze partition formation with 
regards to error reduction and speed-up. In graph parameter analysis, 
we discovered results showing a correlation between parameters and 
normalized error results. We also further tested our iterative approach 
for modeling 3-D human digestive anatomy for our VESS and VCoST 
surgery simulators. As a future work of our study, we plan to evaluate 
our approach with more comprehensive graph clustering approaches 
such as Mean-Shift, Highly Connected Subgraphs, Affinity Propagation, 
with further graph complexity parameters such as assortativity, 

Fig. 9. (a) 3-D scene with joints after solving with five-iteration partitioned and non-partitioned optimization model, (b) Scene error comparison using the Canny 
edge detection algorithm. 

D. Demirel et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 119 (2020) 103695

11

coreness, cliques, etc. We will also further validate the effectiveness of 
POM-GAML with other regions such as shoulder, knee, elbow, etc. 
physiology where anatomy comprises many cartilages, joints and very 
elastic membranes. 
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